
Software Engineering

Dr. Kaushal A Shah, Assistant Professor
Computer Science and Engineering

Coding and Unit Testing
UNIT-5

Programming Principles and Guidelines

1. Select data structures that will meet the need of the design.
2. Keep conditional logic as simple as possible.
3. Understand the software architecture and make interfaces

that are according to it.
4. Select meaningful variable names and follow other local

coding standards.
5. Write code that's self-documenting.
6. Create a visual layout.
7. Constrain your algorithm by structured programming

practice.

Programming Practices

Image source :
Google

• Control construct
The single entry and exit constructs need to be used.

• Use of goto
 The goto statements make the program unstructured. So

avoid use of goto statements as possible.
• Information hiding
• Nesting
 Structure inside another structure is called as nesting. If there

is too deep nesting then it becomes hard to understand the code
as well as complex.

• User defined data types
 User can define data type to enhance the readability of the

code.

Programming Practices (Contd.)
• Modular size
 The size of program may be large or small. There is no rule for size

of the program. So as possible generate different module but not of
large size.

• Side effects
 Sometimes if some part of code may change then it may generate

some kind of problems called as side effects.
• Robustness
 If any kind of exception is generated, the program should generate

some kind of output. Then it is called as robustness. In this situation
the programs do not crash.

• Switch case with defaults
 Inside the switch case statement if any value which is unpredictable

is given as argument then there should be default case to execute it

Coding Standards

Good software development organizations normally require their
programmers to adhere to some well-defined and standard style

of coding called coding standards.

Coding Standards (Contd.)
▪ Most software development organizations formulate their own

coding standards that suit them most, and need their
engineers to follow these standards strictly.

▪ The purpose of requiring all engineers of an organization to
adhere to a standard style of coding is the following:

A coding standard gives a uniform appearance to the codes
written by different engineers.

It enhances code understanding.

It encourages good programming practices.

Coding Standards (Contd.)
▪ A coding standard lists several rules to be followed such as,

the way variables are to be named, the way the code is to be
laid out, error return conventions, etc.

▪ The following are some representative coding standards:
Rules for limiting the use of global
These rules list what types of data can be declared global and what cannot.

Naming conventions for global & local variables & constant identifiers
A possible naming convention can be that global variable names always
start with a capital letter, local variable names are made of small letters,
and constant names are always capital letters.

Coding Standards (Contd.)
Contents of the headers preceding codes for different modules

• The information contained in the headers of different modules

should be standard for an organization.
• The exact format in which the header information is organized

in the header can also be specified.
The following are some standard header data

Module Name Creation Date Author’s Name

Modification history Synopsis of the module

Global variables accessed/modifiedby the module
Different functions supported, along with their input/output

parameters

Coding Standards (Contd.)
Error return conventions and exception handling mechanisms

• The way error conditions are reported by different functions
in a program are handled should be standard within an
organization.

• For example, different functions while encountering
an error condition should either return a 0 or 1 consistently.

Incremental Development of Code
• Then test that code based on

some cases then execute the
test script.

• It should be checked that
any kind of errors are
generated then fix the errors.

• If any kind of errors are not
generated then covered all
the functionalities mentioned
in the specification, the
process is terminated.

• Each and every functionality
is written and immediately
tested is one of its
advantages

Coding Guidelines

▪ The following are some representative coding guidelines
▪ Do not use a coding style that is too clever or too difficult to

understand

▪ The code should be well-documented
▪ The length of any function should not exceed 10 source lines
▪ Do not use goto statements

The Types of Faults
Algorithmic Logic is wrong Code reviews
Syntax Wrong syntax; typos Compiler
Computation/ Precision Not enough accuracy
Documentation Misleading documentation
Stress/Overload Maximum load violated
Capacity/Boundary Boundary cases are usually

special cases
Timing/Coordination Synchronization issues Very hard

to replicate
Throughput/Performance System performs below

expectations
Recovery System restarted from abnormal

state
Hardware & related software Compatibility issues
Standards Makes for difficult maintenance

Code Review
▪ Code Review is carried out after the moduleis

successfully compiled and all the syntax errors have been
eliminated.

▪ Code Reviews are extremely cost-effective strategies for
reduction in coding errors and to produce high quality code.

Types
of
Review
s

Code
Walk
Through

Code
Inspectio
n

Code Walk Through

▪ Code walk through is an informal code analysis technique.
▪ The main objectives of the walk through are to discover

the
algorithmic and logical errors in the code.

▪ A few members of the development team are given the code few
days before the walk through meeting to read and understand code.

▪ Each member selects some test cases and simulates execution of
the code by hand

▪ The members note down their findings to discuss these in a walk
through meeting where the coder of the module is present.

Code Inspection
▪ The aim of Code Inspection is to discover some common types of

errors caused due to improper programming.

▪ In other words, during Code Inspection the code is examined for the
presence of certain kinds of errors.

• For instance, consider the classical error of writing a procedure
that modifies a parameter while the calling routine calls that
procedure with a constant actual parameter.

• It is more likely that such an error will be discovered by looking
for these kinds of mistakes in the code.

▪ In addition, commitment to coding standards
is also checked.

Few Classical Programming Errors

▪ Use of uninitialized variables
▪ Jumps into loops
▪ Non terminating loops
▪ Array indices out of bounds
▪ Improper storage allocation and de-allocation
▪ Mismatches between actual and formal parameter in procedure calls

▪ Use of incorrect logical operators or incorrect precedence among
operators

▪ Improper modification of loop variables

Software Documentation

▪ When various kinds of software products are developed, various
kinds of documents are also developed as part of any software
engineering process e.g.

• Users’ manual,
• Software requirements specification (SRS) documents,
• Design documents,
• Test documents,
• Installation manual, etc

Software Testing

Testing is the process of exercising a program with the specific
intent of finding errors prior to delivery to the end user.

Don’t view testing as a “safety net” that will catch all errors that
occurred because of weak software engineering practice.

Who tests the Software?

D
ev

el
op

er Tester

Understands the system but, will
test "gently"

and, is driven by "delivery"

Must learn about the system,
but, will attempt to break it

and, is driven by quality

Testing without plan is of no
point It wastes time and
effort

Testing need a strategy Dev
team needs to work with
Test team, “Egoless
Programming”

When to test Software?

Unit Test

Integration Test

Performance Test

Acceptance Test

Installation Test

Design
Specs
System
functional
requirementsOther
software
requirement
s
Custom
er SRS

User
environment

Unit Test Unit Test
Component Code Component Code Component Code

Function Test

Integrated
modules

Functioning
system

Verified, validated
software

Accepted
system

System in
use!

Verification vs Validation

Verification
Are we building the product right?

The objective of Verification is to make sure that the product being
develop is as per the requirements and design specifications.

Validation
Are we building the right product?

The objective of Validation is to make sure that the product actually
meet up the user’s requirements, and check whether the specifications

were correct in the first place.

Verification vs Validation
(Contd.)Process of evaluating products of a

development phase to find out
whether they meet the specified
requirements.

Activities involved: Reviews,
Meetings and Inspections

Carried out by QA team

Execution of code is not comes
under Verification

Explains whether the outputs are
according to inputs or not

Cost of errors caught is less

Process of evaluating software at the
end of the development to determine
whether software meets the customer
expectations and requirements.

Activities involved: Testing like black
box testing, white box testing, gray
box testing

Carried out by testing team

Execution of code is comes
under Validation

Describes whether the software is
accepted by the user or not

Cost of errors caught is high

Software Testing Strategy
Unit Testing

• It concentrate on each unit of the software as
implemented in source code.

• It focuses on each component
individual, ensuring that it functions properly
as a unit.

Integration Testing
• It focus is on design andconstruction of
• software architecture
• Integration testing is the process of testing the

interface between two software units or
modules

Software Testing Strategy (Contd.)
Validation Testing

• Software is validated againstrequirements
established as a part of requirement modeling

• It give assurance that software meets all
informational, functional, behavioral and
performance requirements.

System Testing
• Thesoftware andother software elements

are
tested as a whole

• Software once validated, must be combined
with other system elements e.g. hardware,
people, database etc…

• It verifies that all elements mesh properly and
that overall system function / performance is
achieved.

Unit Testing
• Unit is the smallest part of a software system that is testable.

• It may include code files, classes and methods which can be

tested individually for correctness.

• Unit Testing validates small building block of a complex

system before testing an integrated large module or whole

system

• The unit test focuses on the internal processing logic and data

structures within the boundaries of a component.

Unit Testing (Contd.)
▪ The module is tested to ensure that information properly

flows into and out of the program unit

▪ Local data structures are examined to ensure that data stored
temporarily maintains its integrity during execution

▪ All independent paths through the control structures are
exercised to ensure that all statements in module have been
executed at least once

▪ Boundary conditions are tested to ensure that the module
operates properly at boundaries established to limit or
restricted processing

▪ All error handling paths are tested.

Unit Testing (Contd.)
▪ Component-testing (Unit Testing) may be done in isolation

from rest of the system

▪ In such case the missing software is replaced by Stubs and
Drivers and simulate the interface between the software
components in a simple manner

Unit Testing (Contd.)
▪ Let’s take an example to understand it in a better

way.

▪ Suppose there is an application consisting of three
modules say, module A, module B & module C.

▪ Developer has design in such a way that module B
depends on module A & module C depends on
module B

▪ The developer has developed the module B and now
wanted to test it.

▪ But the moduleA andmoduleC has notbeen
developed yet.

▪ In that case to test the module B completely we can
replace the module A by Driver and module C by stub

Unit Testing (Contd.)

▪ Driver and/or Stub software must be developed for each unit test
▪ A driver is nothing more than a "main program"

• It accepts test case data
• Passes such data to the component and
• Prints relevant results.

▪ Driver
• Used in Bottom up approach
• Lowest modules are tested first.
• Stimulates the higher level of components
• Dummy program for Higher level component

Unit Testing (Contd.)
▪ Stubs serve to replace modules that are subordinate (called by) the

component to be tested.

▪ A stub or "dummy subprogram"
• Uses the subordinate module's interface
• May do minimal data manipulation
• Prints verification of entry and
• Returns control to the module undergoing testing

▪ Stubs
• Used in Top down approach
• Top most module is tested first
• Stimulates the lower level of components
• Dummy program of lower level components

Metrics
• Metrics are quantitative measure that the software engineer to

gain the efficiency of the process

Types of
Measure
s

Size
Measure

Complexity
Measure

Size Measure
Size oriented measure is derived by considering the size of software that
has been produced.
Any organization builds a simple record of size measure for the software
projects. It is built based on past experiences.
Set of size measure is given below:

• Size = Kilo Line of Code
• Effort = Person month
• Productivity = KLOC/Person-month
• Cost = $/KLOC
• Quality = Number of faults / KLOC
• Documentation = Pages/KLOC

 Size measure is based on line of code computation.

Complexity Measure
• If the complexity is measured in terms of line of code then it

may vary from system to system.
• Complexity can be done by various methods such as

cyclomatic complexity, Halstead measure and Knot count
measure.

• Cyclomatic complexity
• Independent path is any path through use of the program that

introduces at least one new set of processing statements or a new
condition.

• Cyclomatic complexity is software metric that provides a quantitative
measure of the logical complexity of a program.

• It defines number of independent paths in the basis of set of program
and provides us with an upper bound for the number of tests that
must be conducted to ensure all statements have been executed at
least once.

Cyclomatic Complexity
It can be computed 3 ways:

• The number of regions corresponds to cyclomatic complexity.

• Cyclomatic complexity V (G) can be defined as
 V (G) =E-N+2
 Where E is number of flow graph edges and N is the number of flow
graph nodes.

• Cyclomatic complexity V (G) can also be defined as
 V (G) = P + 1
 Where P is the number of predicate nodes contained in the graph.

Cyclomatic Complexity

Halstead Measure

• Halstead's theory of software science is one of "the best known and

most thoroughly studied composite measures of (software)

complexity".

• Software science assigns quantitative laws to the development of

computer software, using a set of primitive measures that may be

derived after code is generated or estimated once design is

complete.

Halstead Measure (Contd.)
• These follow:

• n1= the number of distinct operators that appear in a program. n2=

the number of distinct operands that appear in a program. N1= the

total number of operator occurrences. N2= the total number of

operand occurrences.
Symbol

Formula

Program Length N N = N1 + N2

Program Vocabulary n
n = n1 + n2

Volume V V = N * (log2n)
Difficulty D D = (n1/2) * (n2/2)

Effort E E = D * V

Halstead Measure (Contd.)
• Program Length

The length of a program is total usage of operators and operands in the program.

 Length = N1 + N2

• Program vocabulary

The program vocabulary is the number of unique operators and operands used in
the program.

 Vocabulary n = n1 + n2

• Program Volume

The program volume can be defined as the maximum number of bits to encode the
program.

 V=Nlog2n

Halstead shows that length N can be estimated

 N= n1log2n1+ n2log2n2

Knot Count
• Knot is a crossing of control flows. These crossings occur due to

non-structural
• jumps in the program.
• Typically the goto statements cause this kind of non-structural

jump. This metric is designed for FORTRAN language.
• If the knot is more intertwined then that means the program is

more complex.
• The code with large knots is generally extremely difficult to read

and understand.
• The example is shown on the right side.

Comparison of Different Metrics
Size measure Cyclomatic

Complexity
Halstead’s
measure

Knot count

∙ This is simple
method of
obtaining the
metrics. It is
based on
lines of code.

∙ This measure is
based on the
control flow of the
programming
constructs such as
if then else,
do-while,
repeat-until and so
on.

∙ The
measurable
quantities of
the program
are
operators
and
operands.

∙ It is basically
designed for
the
FORTRAN
programs.

∙ Modules of
the same size
can have
different
complexities.

∙ For larger number
of decisions larger
is the complexity.

∙ It is based
on length
and volume
of the
program.

∙ More number
of knots
indicates
more

complex in
the
program.

www.paruluniversity.ac.i
n

